
Modelling buyer behaviour - 2
Rate-frequency models
By Chuck Chakrapani

As discussed in the previous article, sometimes it is useful to understand the underlying pat-
terns of buyer behaviour that are not apparent from the survey data. Understanding such pat-
terns has several practical applications, which will become evident as we continue our discus-
sion of buyer behaviour models.

Predictable patterns of buyer behaviour
Let us begin with a research study that indicates that, on average, a household buys 4 litres
of milk a week. We would expect that some households buy more than this amount and oth-
ers less. Survey cross-tabs would also tell us how the buying frequencies are distributed. This
distribution will vary form survey to survey due to sampling and other related and unrelated
factors.
If we assume that there is an underlying regularity in the way consumers behave, our objec-
tive now becomes identifying this pattern, given the result of the survey data.

Basic assumptions
We begin with a few assumptions.
• Each household has a typical (or characteristic) rate of purchase;
• This rate may vary from household to household;
• Given the same rate of purchase, different households will exhibit different patterns of pur-
chase. (Two households may buy an item at a mean rate of 2 per week. Yet in any given
week, either of these households can buy any number of items).

The gamma distribution
When we make these assumptions and observe buying frequency, behaviour appears to fol-
low a well-known mathematical curve known as the Gamma distribution (see graph). This
distribution has several important properties as noted below.
• The distribution starts with zero and continues to infinity. In other words, while a household
can never buy less than 0 number of times, in theory it can buy any number of times, in a
given period.
• As the rate of buying increases, the number of consumers buying decreases.
• The majority of consumers have a low frequency of buying. Very few have a high purchase
frequency rate. The pattern shows a peak on the left and a very long tail on the right.

In using the Gamma distribution, we assume that the behaviour represented by the model is
not ‘step-wise’. The model would also assume that at least 90% of consumers exhibit the
behaviour under consideration.
When more than 10% of consumers never buy the product under question, one needs to
exclude ‘never’ buyers from the modelling process. The Gamma distribution models the buying
rather than the non-buying behaviour.
What does the distribution model? The distribution actually models the underlying rates
of purchase that give rise to the distribution observed in survey research or panel data.
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The Poisson distribution
We still need to address the assumption that different households have different underlying
(characteristic) rates of purchase. Any household at any given time can deviate from its char-
acteristic rate of purchase. Usually this happens for some identifiable reason for any given
household. (For example, a household that eats out twice a month may have done so five
times during the month under observation, because guests were visiting from abroad during
that period). Yet such knowledge is not readily available to the researcher. Neither can the
researcher do much with such knowledge, even if it were available to him/her.
Consequently, no matter how logical the deviations are for the household under question, we
can treat these deviations as random fluctuations in our model. This random or stochastic
component itself can be incorporated in the modelling process.
For instance, a household which has an underlying or characteristic purchase frequency of 1
purchase per month can have any of the following frequency during a given month: 0, 1, 2,
3,... this frequency can be approximated by another distribution known as the Poisson distri-
bution.
To identify the value of a Poisson distribution all we need is the average purchase frequency
of a household. Suppose a household eats out 2.3 times per month. What are the chances
that it will not eat out at all in a given month? What are the chances that it will eat our more
than 5 times? All this can be modelled using the Poisson distribution. (See Table 1). Such dis-
tributions can be verified through panel data or other records that may be available. (More on
how to calculate the actual figures later).

We can combine the Gamma and the Poisson models. This will facilitate our understanding of
both rates or purchase and frequencies of purchase.

Understanding the implications of the models
It is important to understand that the models described above assume no causal relation-
ships. There is no reason why a family with an average frequency of 2.3 should refrain from
eating out 10% of the time. Neither can we claim predictive accuracy for any given household.
A given household with a frequency of 2.3 can refrain from eating out 20% of the time and
another household with the same frequency may do so only 5% of the time. But the models
appear to work at the aggregate level when we apply them to actual empirical data. The
observed regularity at the aggregate level is the justification for using them.

Table 1
The probability of a household eating out given that the household eats out 2.3 times 

per month
# times %HHs
0 9.9
1 22.8
2 27.0
3 19.9
4 12.0
5 5.4
6 2.1
7 0.7
8+ 0.2
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Using the model
At this stage we may want to know the practical application of a model like this. In many
cases, we know only the average rate of purchase but not the underlying distribution that
gives rise to the observed rate of purchase. Knowing the distribution may enable the manufac-
turer to market the product more efficiently. It may also point out any out-of-the-ordinary pur-
chase patterns.

Assumptions of the model
Because the model assumes that there is a relatively constant rate of purchase, it follows that
buying a product should not change the consumer’s probability of buying it again. This is likely
to be the case for new products, the buying of which may positively or negatively influence
repurchase. One can think of several instances where this might be the case. For instance,
when the product is introduced into the market for the first time or when an advertising or pro-
motional campaign is undertaken (to attract new buyers) we may expect to find more instabili-
ty. This will influence purchase-repurchase probabilities. One way to handle this situation
might be to exclude first time buyers. We can then calculate the rates for those who have
bought the product at least once before.
The second assumption is that the product usage should not be cyclical. For example, the
average monthly rate of a product that is purchased mostly during Christmas or Easter is
unlikely to produce a distribution that corresponds to the buyer’s actual buying pattern.
A related observation is that the product should not be one that is bought at fixed intervals.
Consider a car that is mostly used for driving to work. In this case, gasoline will be bought at
regular intervals.
In short, for the model to work, there must be random variations around the characteristic rate
for each household. Whenever this is not the case (eg. products bought at specified intervals
or cyclical products) the model will not work satisfactorily. Once these conditions are satisfied,
we can use the Gamma-Poisson model to estimate the frequency of purchase.

Calculating the parameters needed
The parameters of the model can be calculated fairly easily using any standard statistical text
that deals with distributions. Such information is widely available. Therefore, I don't propose to
discuss the details of calculations here. Instead, we will see how these parameters are calcu-
lated, using the gamma distribution as an example.
To use the Gamma model, all we need are two parameters, c and a. These are obtained as

Table 2
Actual and expected frequency of buying

Actual Model
# times %HHs %HHs Diff.
0 59.8 60.0 -.2
1 21.5 21.0 .5
2 9.9 9.5 .5
3 4.3 4.6 -.3
4 1.8 2.3 -.5
5 1.1 1.2 -.1
6 0.6 .6 0
7 0.4 .3 .1
8 0.2 .2 0
9+ 0.4 .3 .1

PMRS Imprints Archives



follows:
c (mean rate per unit of time) = survey mean frequency ÷ length of survey reporting period

a = square of the survey mean ÷ (survey variance - survey mean)
These parameters can easily be calculated from survey data. (In fact, practically all standard
cross-tabulations provide - or can provide - mean rate and standard deviations. Once we have
the two parameters c and a, the total distribution (such as the one shown in Table 2, column
3) can be calculated with any micro-computer or even a pocket calculator.
Note that the value of a is always positive. Should you obtain a negative value, it simply
means (unless there is a calculation error) that this model is not appropriate for the data you
have.

An example
These steps can be illustrated by a set of hypothetical data that resembles most purchase
patterns. Suppose you collect data on the number of times beer was bought by 2,000 house-
holds during a given week. The data may look something like what are shown in columns 1
and 2 of Table 2. (The fact that such patterns are typical can be confirmed by any consumer
panel that collects data on purchase behaviour.) If we calculate the mean of this purchase fre-
quency, we arrive at 0.785 i.e. an ‘average’ household buys beer less than once a month -
(.785 times to be exact) with a variance of .202.
According to our formula:

c = .785 ÷ 1 = .785
a= (.196)2 ÷ (.202 - .196) = .633

Once we have these two parameters, the frequency of purchase can then be calculated by
using simple algebraic formulas, as shown below:

% consumers who did not buy at all:
F0 = ((a/a+TC))a *100

% consumers who bought m times:
Fm = fm-1* ((a + m - 1) ÷m))* (Tc/(a+Tc))

Where
F = Frequency of purchase (%)
T = Time period

For example, if you would like to know the percent of consumers who are likely to buy 3 times
during a given week, then your m=3. We have already calculated the value of c and a.
Because our calculated figures are for a week, T = 1. (If you want to use a different length of
time e.g., 4 weeks instead of 1, set T = 4). We can simply substitute these values in the for-
mula above and arrive at the percentage of consumers who would buy the product three
times during the week.
Applying these formulas to our data we get the information shown in Table 3. You will note that
the actual figures are fairly close. This is not an unusual result. For many established con-
sumer products this model holds fairly well.
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The Gamma and the Poisson distribution
Essentially this is the result of putting two separate (the Gamma and the Poisson) distribu-
tions together.
The Gamma distribution models the frequency of household buying at a given rate while the
Poisson distribution accounts for the distribution of purchases within a household. These are
described below.

The Gamma model
Going back to the purchase distribution curve (the Gamma distribution), we note that it is a
continuous curve which means that any purchase frequency is possible. The x-axis of this
curve represents the rate of purchase and the y-axis the proportion of buyers. The area under
this curve between any two buying rates is the proportion of consumers who would buy that
product at the rates defined by the rates under consideration.
A main characteristic of this model is that, as the rate of purchase of buyers decrease, the
proportion of buyers between a given rate r and 2r will always be higher than the proportion of
buyers between 2r and 3r.

Reporting periods
In our example, we used a one week buying rate for our calculations. But why one week?
Why not monthly or quarterly? The answer is that while survey or panel data may exist in any
form, for each product, a characteristic purchase cycle may exist. For instance, the character-
istic cycle for beer may be every week or every month rather than every 10 days.
Reporting periods in surveys should take into account several factors such as the cost of data
collection and the possibility of recall error. However, for modelling purchases, what deter-
mines the time period is the probable purchase cycle.
While using a logical time cycle is desirable, it should be noted that the distribution itself is not
scale dependent. If one week’s rate is .196, the four week rate is simply .196 times 4, no
more, no less.

The Poisson model

Table 3. How the Gamma and the Poisson distributions combine together
to decompose the survey data into distribution of 

purchase frequency and rates

Rate Mean Gamma Poisson
rate HH rate HH Frequency

0 1 2 3 4 5+

0.0-0.2 0.7 51% 87 12 .9 .1
0.2-0.4 0.3 18 56 33 9 2 .2
0.4-0.6 0.5 11 37 16 6 2 1 .3
…… … … … … … … … …
…… … … … … … … … …
…… … … … … … … … …
Survey result 62 20 10 4 2 2
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As noted before, each family will have a different distribution of buying frequencies. This will,
of course, depend on their buying rates.
If we review the rate of distribution curve (Figure 1) we note that 50.7% of families show a
rate of buying that ranges between 0 and .2 times per week. However, any family falling into
this part of the distribution may have bought 0, 1, 2,... number of times. Let us assume that
households falling in this range have a mean purchase frequency of 0.7. If the mean pur-
chase frequency is 0.7, how many can be expected to buy the product 0, 1, 2,... times during
the time period under consideration? the Poisson distribution provides the answer to this
question. (For details of frequency calculations please consult any book on statistics.)

Combining the Gamma and the Poisson distributions
Recall the frequency of beer purchase we obtained from the survey. All we know from the sur-
vey is the number of times a household has bought an item and the average rate of purchase.
What the Gamma-Poisson distributions show is how the survey results come about.

Models behind the numbers
Survey data provides the basic material for the Gamma and the Poisson distributions. If the
Gamma-Poisson model fits the data (it appears to, for many established products) then it
explains how the survey results came about.
The models identify the patterns of purchase, and this alone can be a valuable aid to the mar-
keter in understanding buyer behaviour.

Dr. Chuck Chakrapani is a consultant in advanced marketing research and modelling tech-
niques.
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